Call: +61 (3) 9466 5255

GPS and GIS Knowledge Base

Home > Services > Technical Support > Knowledge Base

What is SBAS?

Augmentation of a Global Navigation Satellite System (GNSS) is a method of improving the navigation system's attributes, such as accuracy, reliability, and availability, through the integration of external information into the calculation process.

There are many such systems in place and they are generally named or described based on how the GNSS sensor receives the external information. Some systems transmit additional information about sources of error (such as clock drift, ephemeris, or ionospheric delay), others provide direct measurements of how much the signal was off in the past, while a third group provide additional vehicle information to be integrated in the calculation process.

A Satellite Based Augmentation System (SBAS) is a system that supports wide-area or regional augmentation through the use of additional satellite-broadcast messages. Such systems are commonly composed of multiple ground stations, located at accurately-surveyed points. The ground stations take measurements of one or more of the GNSS satellites, the satellite signals, or other environmental factors which may impact the signal received by the users. Using these measurements, information messages are created and sent to one or more satellites for broadcast to the end users.

While SBAS designs and implementations may vary widely, with SBAS being a general term referring to any such satellite-based augmentation system, under the International Civil Aviation Organization (ICAO) rules a SBAS must transmit a specific message format and frequency which matches the design of the United States' Wide Area Augmentation System.

Source: Wikipedia.

What is Bluetooth?

Bluetooth is an open wireless protocol for exchanging data over short distances from fixed and mobile devices, creating personal area networks (PANs). It was originally conceived as a wireless alternative to RS232 data cables. It can connect several devices, overcoming problems of synchronization.

The word Bluetooth is an anglicized version of Old Norse Blåtann or Danish Blåtand, the name of the tenth-century king Harald I of Denmark and Norway, who united dissonant Scandinavian tribes into a single kingdom. The implication is that Bluetooth does the same with communications protocols, uniting them into one universal standard.[1][2][3]

The Bluetooth logo is a bind rune merging the Germanic runes (Hagall, analogous to the modern Latin letter H, for Harald) and (Berkanan, like B, for Bluetooth).

Bluetooth is a standard and communications protocol primarily designed for low power consumption, with a short range (power-class-dependent: 1 meter, 10 meters, 100 meters) based on low-cost transceiver microchips in each device. Bluetooth makes it possible for these devices to communicate with each other when they are in range. Because the devices use a radio (broadcast) communications system, they do not have to be in line of sight of each other.

Source: Wikipedia.

What is GLONASS

GLONASS (Russian tr.: GLObal'naya NAvigatsionnaya Sputnikovaya Sistema; "GLObal NAvigation Satellite System" in English) is a radio-based satellite navigation system, developed by the former Soviet Union and now operated for the Russian government by the Russian Space Forces.

It is an alternative and complementary to the United States' Global Positioning System (GPS), the Chinese COMPASS Navigation System, and the planned Galileo positioning system of the European Union (EU).

Development on the GLONASS began in 1976, with a goal of global coverage by 1991. Beginning on 12 October 1982, numerous rocket launches added satellites to the system until the constellation was completed in 1995. Following completion, the system rapidly fell into disrepair with the collapse of the Russian economy. Beginning in 2001, Russia committed to restoring the system, and in recent years has diversified, introducing the Indian government as a partner, and accelerated the program with a goal of restoring global coverage by 2009.[1]

Source: Wikipedia.

What is GPS?

The Global Positioning System (GPS) is a global navigation satellite system (GNSS) developed by the United States Department of Defense and managed by the United States Air Force 50th Space Wing. It is the only fully functional GNSS in the world, can be used freely by anyone, anywhere, and is often used by civilians for navigation purposes.

It uses a constellation of between 24 and 32 medium Earth orbit satellites that transmit precise radiowave signals, which allow GPS receivers to determine their current location, the time, and their velocity. Its official name is NAVSTAR GPS. Although NAVSTAR is not an acronym,[1] a few backronyms have been created for it.[2]

Since it became fully operational on April 27, 1995, GPS has become a widely used aid to navigation worldwide, and a useful tool for map-making, land surveying, commerce, scientific uses, tracking and surveillance, and hobbies such as geocaching. Also, the precise time reference is used in many applications including the scientific study of earthquakes and as a required time synchronization method for cellular network protocols such as the IS-95 standard for CDMA.

Source: Wikipedia

What is a Laser Rangefinder?

A laser rangefinder is a device which uses a laser beam in order to determine the distance to a reflective object.

The most common form of laser rangefinder operates on the time of flight principle.

By sending a laser pulse in a narrow beam towards the object and measuring the time taken by the pulse to be reflected off the target and returned to the sender. Due to the high speed of light, this technique is not appropriate for high precision sub-millimeter measurements, where triangulation and other techniques are often used.

Rangefinders provide an exact distance to targets located beyond the distance of point-blank shooting to snipers and artillery. They can also be used for military reconciliation and engineering.

Opti-Logic Corporation introduced the first consumer level time of flight handheld laser distance meter in 1987. The original handheld consumer priced laser rangefinders were used for golf. Since that time numerous applications have developed. The most popular use is for hunting.

Until 1993, phase shift instruments were reserved to professional users, giving them high prices and advanced functions like Bluetooth data transmission. Less expensive models around 150$/€ are emerging from Bosch with the DLE 50 or Stanley Works with the TLM 100.

Handheld military rangefinders operate at ranges of 2 km up to 25 km and are combined with binoculars or monoculars. When the rangefinder is equipped with a digital magnetic compass (DMC) and inclinometer it is capable of providing magnetic azimuth, inclination, and height (length) of targets. Some rangefinders can also measure a target's speed in relation to the observer. Some rangefinders have cable or wireless interfaces to enable them to transfer their measurement(s) data to other equipment like fire control computers. Some models also offer the possibility to use add-on night vision modules. Handheld rangefinders use standard or non-magnetic batteries.[1]

The more powerful models of rangefinders measure distance up to 25 km and are normally installed either on a tripod or directly on a vehicle or gun platform. In the latter case the rangefinder module is integrated with on-board thermal, night vision and daytime observation equipment. The most advanced military rangefinders can be integrated with computer.

In order to make laser rangefinders and laser-guided weapons less useful against military targets, various military arms may have developed laser-absorbing paint for their vehicles. Regardless, some objects don't reflect laser light very well and using a laser rangefinder on them is difficult.

Laser rangefinders are used extensively in 3-D object recognition, 3-D object modelling, and a wide variety of computer vision-related fields. This technology constitutes the heart of the so-called time-of-flight 3D scanners. In contrast to the military instruments described above, laser rangefinders offer high-precision scanning abilities, with either single-face or 360-degree scanning modes.

A number of algorithms have been developed to merge the range data retrieved from multiple angles of a single object in order to produce complete 3-D models with as little error as possible. One of the advantages that laser rangefinders offer over other methods of computer vision is that the computer does not need to correlate features from two images to determine depth information as in stereoscopic methods.

The laser rangefinders used in computer vision applications often have depth resolutions of tenths of millimeters or less. This can be achieved by using triangulation or refraction measurement techniques as opposed to the time of flight techniques used in LIDAR.

Source: Wikipedia.

What is WASS?

WASS is a system of satellites and ground stations that provide GPS signal corrections, giving you even better position accuracy. A WAAS-capable receiver can give you a position accuracy of better than three meters 95 percent of the time. And you don't have to purchase additional receiving equipment or pay service fees to utilize WAAS.

WAAS consists of approximately 25 ground reference stations positioned across the United States that monitor GPS satellite data. Two master stations, located on either coast, collect data from the reference stations and create a GPS correction message. This correction accounts for GPS satellite orbit and clock drift plus signal delays caused by the atmosphere and ionosphere. The corrected differential message is then broadcast through one of two geostationary satellites, or satellites with a fixed position over the equator. The information is compatible with the basic GPS signal structure, which means any WAAS-enabled GPS receiver can read the signal.

Who benefits from WAAS?

Currently, WAAS satellite coverage is only available in North America. There are no ground reference stations in South America, so even though GPS users there can receive WAAS, the signal has not been corrected and thus would not improve the accuracy of their unit. For some users in the U.S., the position of the satellites over the equator makes it difficult to receive the signals when trees or mountains obstruct the view of the horizon. WAAS signal reception is ideal for open land and marine applications. WAAS provides extended coverage both inland and offshore compared to the land-based DGPS (differential GPS) system. Another benefit of WAAS is that it does not require additional receiving equipment, while DGPS does.

Other governments are developing similar satellite-based differential systems. In Asia, it's the Japanese Multi-Functional Satellite Augmentation System (MSAS), while Europe has the Euro Geostationary Navigation Overlay Service (EGNOS). Eventually, GPS users around the world will have access to precise position data using these and other compatible systems.

How does Wi-Fi work and what are the benefits?

The term Wi-Fi is often used by the public as a synonym for wireless LAN (WLAN); but not every wireless LAN product has a Wi-Fi certification, which may be because of certification costs that must be paid for each certified device type.

Wi-Fi  is a trademark of the Wi-Fi Alliance for certified products based on the IEEE 802.11 standards. This certification warrants interoperability between different wireless devices.

Wi-Fi is supported by most personal computer operating systems, many game consoles, laptops, smartphones, printers, and other peripherals.

A Wi-Fi enabled device such as a PC, game console, mobile phone, MP3 player or PDA can connect to the Internet when within range of a wireless network connected to the Internet. The coverage of one or more interconnected access points — called a hotspot can comprise an area as small as a single room with wireless-opaque walls or as large as many square miles covered by overlapping access points. Wi-Fi technology has served to set up mesh networks, for example, in London.[6] Both architectures can operate in community networks.

In addition to restricted use in homes and offices, Wi-Fi can make access publicly available at Wi-Fi hotspots provided either free of charge or to subscribers to various providers. Organizations and businesses such as airports, hotels and restaurants often provide free hotspots to attract or assist clients. Enthusiasts or authorities who wish to provide services or even to promote business in a given area sometimes provide free Wi-Fi access. There are already more than 300 metropolitan-wide Wi-Fi (Muni-Fi) projects in progress.[7] There were 879 Wi-Fi based Wireless Internet service providers in the Czech Republic as of May 2008.[8][9]

Wi-Fi also allows connectivity in peer-to-peer (wireless ad-hoc network) mode, which enables devices to connect directly with each other. This connectivity mode can prove useful in consumer electronics and gaming applications.

When wireless networking technology first entered the market many problems ensued for consumers who could not rely on products from different vendors working together. The Wi-Fi Alliance began as a community to solve this issue — aiming to address the needs of the end-user and to allow the technology to mature. The Alliance created the branding Wi-Fi CERTIFIED to reassure consumers that products will interoperate with other products displaying the same branding.

Many consumer devices use Wi-Fi. Amongst others, personal computers can network to each other and connect to the Internet, mobile computers can connect to the Internet from any Wi-Fi hotspot, and digital cameras can transfer images wirelessly.

Routers which incorporate a DSL-modem or a cable-modem and a Wi-Fi access point, often set up in homes and other premises, provide Internet-access and internetworking to all devices connected (wirelessly or by cable) to them. One can also connect Wi-Fi devices in ad-hoc mode for client-to-client connections without a router. Wi-Fi also enables places which would traditionally not have network to be connected, for example bathrooms, kitchens and garden sheds. The "father of Wi-Fi", Vic Hayes, stated that being able to access the internet whilst answering a call of nature was "one of life's most liberating experiences".

As of 2007 Wi-Fi technology had spread widely within business and industrial sites. In business environments, just like other environments, increasing the number of Wi-Fi access-points provides redundancy, support for fast roaming and increased overall network-capacity by using more channels or by defining smaller cells. Wi-Fi enables wireless voice-applications (VoWLAN or WVOIP). Over the years, Wi-Fi implementations have moved toward "thin" access-points, with more of the network intelligence housed in a centralized network appliance, relegating individual access-points to the role of mere "dumb" radios. Outdoor applications may utilize true mesh topologies. As of 2007 Wi-Fi installations can provide a secure computer networking gateway, firewall, DHCP server, intrusion detection system, and other functions.

Source: Wikipedia.

What is Geotagging?

Geotagging is the process of adding geographical identification metadata to various media such as photographs, video, websites, or RSS feeds and is a form of geospatial metadata. These data usually consist of latitude and longitude coordinates, though they can also include altitude, bearing, accuracy data, and place names.

Geotagging can help users find a wide variety of location-specific information. For instance, one can find images taken near a given location by entering latitude and longitude coordinates into a Geotagging-enabled image search engine. Geotagging-enabled information services can also potentially be used to find location-based news, websites, or other resources.[1]

Less commonly, this process has been called geocoding (ie. a geocoded photograph), a term that more often refers to the process of taking non-coordinate based geographical identifiers, such as a street address, and finding associated geographic coordinates (or vice versa for reverse geocoding), or to the use of a camera that inserts the coordinates when making the picture, for example using its built in GPS receiver.

Source: Wikipedia.

More information here.

GPS signals (L1, L2, L5)

Global Positioning System (GPS) satellites broadcast radio signals to enable GPS receivers to determine location and synchronized time.

GPS signals include ranging signals, used to measure the distance to the satellite, and navigation messages. The navigation messages include ephemeris data, used to calculate the position of the satellite in orbit, and information about the time and status of the satellite constellation.

Original GPS signals

The original GPS design contains two ranging codes: the Coarse/Acquisition code or C/A, which is freely available to the public, and the restricted Precision code, or P-code, usually reserved for military applications.

Coarse/Acquisition code

The C/A code is a 1,023 bit long pseudonoise code (also pseudorandom binary sequence) (PN or PRN code) which, when transmitted at 1.023 megabits per second (Mbit/s), repeats every millisecond. These sequences only match up, or strongly correlate, when they are exactly aligned. Each satellite transmits a unique PRN code, which does not correlate well with any other satellite's PRN code. In other words, the PRN codes are highly orthogonal to one another. This is a form of Code Division Multiple Access (CDMA), which allows the receiver to recognize multiple satellites on the same frequency.

Precision code

The P-code is also a PRN, however each satellite's P-code PRN code is 6.1871 × 1012 bits long (6,187,100,000,000 bits) and only repeats once a week (it is transmitted at 10.23 Mbit/s). The extreme length of the P-code increases its correlation gain and eliminates any range ambiguity within the Solar System. However, the code is so long and complex it was believed that a receiver could not directly acquire and synchronize with this signal alone. It was expected that the receiver would first lock onto the relatively simple C/A code and then, after obtaining the current time and approximate position, synchronize with the P-code.

Whereas the C/A PRNs are unique for each satellite, the P-code PRN is actually a small segment of a master P-code approximately 2.35 × 1014 bits in length (235,000,000,000,000 bits) and each satellite repeatedly transmits its assigned segment of the master code.

To prevent unauthorized users from using or potentially interfering with the military signal through a process called spoofing, it was decided to encrypt the P-code. To that end the P-code was modulated with the W-code, a special encryption sequence, to generate the Y-code. The Y-code is what the satellites have been transmitting since the anti-spoofing module was set to the "on" state. The encrypted signal is referred to as the P(Y)-code.

The details of the W-code are kept secret, but it is known that it is applied to the P-code at approximately 500 kHz, which is a slower rate than that of the P-code itself by a factor of approximately 20. This has allowed companies to develop semi-codeless approaches for tracking the P(Y) signal, without knowledge of the W-code itself.

Navigation message

In addition to the PRN ranging codes, a receiver needs to know detailed information about each satellite's position and the network. The GPS design has this information modulated on top of both the C/A and P(Y) ranging codes at 50 bit/s and calls it the Navigation Message.

The navigation message is made up of three major components. The first part contains the GPS date and time, plus the satellite's status and an indication of its health. The second part contains orbital information called ephemeris data and allows the receiver to calculate the position of the satellite. The third part, called the almanac, contains information and status concerning all the satellites; their locations and PRN numbers.

Whereas ephemeris information is highly detailed and considered valid for no more than four hours, almanac information is more general and is considered valid for up to 180 days. The almanac assists the receiver in determining which satellites to search for, and once the receiver picks up each satellite's signal in turn, it then downloads the ephemeris data directly from that satellite. A position fix using any satellite can not be calculated until the receiver has an accurate and complete copy of that satellite's ephemeris data.

The navigation message itself is constructed from a 1,500 bit frame, which is divided into five subframes of 300 bits each and transmitted at 50 bit/s (therefore each subframe requires 6 seconds to transmit).

  • Subframe 1 contains the GPS date and time, plus satellite status and health.
  • Subframes 2 and 3, when combined, contain the transmitting satellite's ephemeris data.
  • Subframes 4 and 5, when combined, contain 1/25th of the almanac; meaning 25 whole frames worth of data are required to complete the 15,000 bit almanac message. At this rate, 12.5 minutes are required to receive the entire almanac from a single satellite.

Frequency information

For the ranging codes and navigation message to travel from the satellite to the receiver, they must be modulated onto a carrier frequency. In the case of the original GPS design, two frequencies are utilized; one at 1575.42 MHz (10.23 MHz × 154) called L1; and a second at 1227.60 MHz (10.23 MHz × 120), called L2.

The C/A code is transmitted on the L1 frequency as a 1.023 MHz signal using a Bi-Phase Shift Key (BPSK) modulation technique. The P(Y)-code is transmitted on both the L1 and L2 frequencies as a 10.23 MHz signal using the same BPSK modulation, however the P(Y)-code carrier is in quadrature with the C/A carrier; meaning it is 90° out of phase.

Besides redundancy and increased resistance to jamming, a critical benefit of having two frequencies transmitted from one satellite is the ability to measure directly, and therefore remove, the ionospheric delay error for that satellite. Without such a measurement, a GPS receiver must use a generic model or receive ionospheric corrections from another source (such as the Wide Area Augmentation System or EGNOS). Advances in the technology used on both the GPS satellites and the GPS receivers has made ionospheric delay the largest remaining source of error in the signal. A receiver capable of performing this measurement can be significantly more accurate and is typically referred to as a dual frequency receiver.

Modernized GPS signals

Having reached Full Operational Capability on July 17, 1995[1] the GPS system had completed its original design goals. However, additional advances in technology and new demands on the existing system led to the effort to "modernize" the GPS system. Announcements from the Vice President and the White House in 1998 heralded the beginning of these changes and in 2000, the U.S. Congress reaffirmed the effort; referred to it as GPS III.

The project involves new ground stations and new satellites, with additional navigation signals for both civilian and military users, and aims to improve the accuracy and availability for all users. A goal of 2013 has been established with incentives offered to the contractors if they can complete it by 2011.

General Features

Modernized GPS civilian signals have two general improvements over their legacy counterparts; a dataless acquisition aid and Forward Error Correction (FEC) coding of the NAV message.

A dataless acquisition aid is an additional signal—called a pilot carrier in some cases—broadcast alongside the data signal. This dataless signal is designed to be easier to acquire than the data encoded and, upon successful acquisition, can be used to acquire the data signal. This technique improves acquisition of the GPS signal and boosts power levels at the correlator.

The second advancement is to use Forward Error Correction (FEC) coding on the NAV message itself. Due to the relatively slow transmission rate of NAV data (usually 50 bits per second) small interruptions can have potentially large impacts. Therefore, FEC on the NAV message is a significant improvement in overall signal robustness.

L2C

One of the first announcements was the addition of a new civilian-use signal, to be transmitted on a frequency other than the L1 frequency used for the Coarse Acquisition (C/A) signal. Ultimately, this became the L2C signal; so called because it is broadcast on the L2 frequency. Because it requires new hardware onboard the satellite, it is only transmitted by the so-called Block IIR-M and later design satellites. The L2C signal is tasked with improving accuracy of navigation, providing an easy to track signal, and acting as a redundant signal in case of localized interference.

Unlike the C/A code, L2C contains two distinct PRN code sequences to provide ranging information; the Civilian Moderate length code (called CM), and the Civilian Long length code (called CL). The CM code is 10,230 bits long, repeating every 20 ms. The CL code is 767,250 bits long, repeating every 1500 ms. Each signal is transmitted at 511,500 bits per second (bit/s), however they are multiplexed together to form a 1,023,000 bit/s signal.

CM is modulated with the CNAV Navigation Message (see below), where-as CL does not contain any modulated data and is called a dataless sequence. The long, dataless sequence provides for approximately 24 dB greater correlation (~250 times stronger) than L1 C/A-code.

When compared to the C/A signal, L2C has 2.7 dB greater data recovery and 0.7 dB greater carrier-tracking, although its transmission power is 2.3 dB weaker.

CNAV Navigation message

The CNAV data is an upgraded version of the original NAV navigation message. It contains higher precision representation and nominally more accurate data than the NAV data. The same type of information (Time, Status, Ephemeris, and Almanac) is still transmitted using the new CNAV format, however instead of using a frame / subframe architecture, it features a new pseudo-packetized format made up of 12-second 300-bit message packets.

In CNAV, two out of every four packets are ephemeris data and at least one of every four packets will include clock data, but the design allows for a wide variety of packets to be transmitted. With a 32-satellite constellation, and the current requirements of what needs to be sent, less than 75% of the bandwidth is used. And only a small fraction of the available packet types have been defined. This enables the system to grow and incorporate advances.

There are many important changes in the new CNAV message:

  • It uses Forward Error Correction (FEC) in a rate 1/2 convolution code, so while the navigation message is 25 bit/s, a 50 bit/s signal is transmitted.
  • The GPS week number is now represented as 13-bits, or 8192 weeks, and only repeats every 157.0 years, meaning the next return to zero won't occur until the year 2137. This is longer compared to the L1 NAV message's use of a 10-bit week number, which returns to zero every 19.6 years.
  • There is a packet that contains a GPS-to-GNSS time offset. This allows for interoperability with other global time-transfer systems, such as Galileo and GLONASS, both of which are supported.
  • The extra bandwidth enables the inclusion of a packet for differential correction, to be used in a similar manner to satellite based augmentation systems and can be used to correct the L1 NAV clock data.
  • Every packet contains an alert flag, to be set if the satellite data can not be trusted. This means users will know within 6 seconds if a satellite is no longer usable. Such rapid notification is important for safety-of-life applications, such as aviation.
  • Finally, the system is designed to support 63 satellites, compared with 32 in the L1 NAV message.

L2C Frequency information

An immediate effect of having two civilian frequencies being transmitted is the civilian receivers can now directly measure the ionospheric error in the same way as dual frequency P(Y)-code receivers. However, if a user is utilizing the L2C signal alone, they can expect 65% more position uncertainty than with the L1 signal.

Defined in IS-GPS-200D

L5, Safety of Life

Civilian, safety of life signal planned to be available with first GPS IIF launch (2009).

Two PRN ranging codes are transmitted on L5: the in-phase code (denoted as the I5-code); and the quadrature-phase code (denoted as the Q5-code). Both codes are 10,230 bits long and transmitted at 10.23 MHz (1ms repetition). In addition, the I5 stream is modulated with a 10-bit Neuman-Hofman code that is clocked at 1 kHz and the Q5-code is modulated with a 20-bit Neuman-Hofman code that is also clocked at 1 kHz.

  • Improves signal structure for enhanced performance
  • Higher transmitted power than L1/L2 signal (~3db, or twice as powerful)
  • Wider bandwidth provides a 10x processing gain
  • Longer spreading codes (10x longer than C/A)
  • Uses the Aeronautical Radionavigation Services band

The recently launched GPS IIR-M7 satellite transmits a demonstration of this signal.[2]

L5 Navigation message

The L5 CNAV data includes SV ephemerides, system time, SV clock behavior data, status messages and time information, etc. The 50 bit/s data is coded in a rate 1/2 convolution coder. The resulting 100 symbols per second (sps) symbol stream is modulo-2 added to the I5-code only; the resultant bit-train is used to modulate the L5 in-phase (I5) carrier. This combined signal will be called the L5 Data signal. The L5 quadrature-phase (Q5) carrier has no data and will be called the L5 Pilot signal.

L5 Frequency information

Broadcast on the L5 frequency (1176.45 MHz, 10.23 MHz × 115), which is an Aeronautical navigation band. Both the WRC-2000 added space signal component to this aeronautical band so aviation community can manage interference to L5 more effectively than L2. Defined in IS-GPS-705

L1C

Civilian use signal, broadcast on the L1 frequency (1575.42 MHz), which currently contains the C/A signal used by all current GPS users. The L1C will be available with first Block III launch, currently scheduled for 2013. Per the draft IS-GPS-800 specification, L1C was developed to serve as the baseline signal format for Japan's Quasi-Zenith Satellite System (QZSS).

The PRN codes are 10,230 bits long and transmitted at 1.023 MHz. It uses both Pilot and Data carriers like L2C.

As of July 2007, the modulation technique has been finalized. The chosen method is to use BOC(1,1) for the data signal and TMBOC for the pilot. The Time Multiplexed Binary Offset Carrier (TMBOC) is BOC(1,1) for all except 4 of 33 cycles, when it switches to BOC(6,1). Of the total L1C signal power, 25% is allocated to the data and 75% to the pilot.

  • Implementation will provide C/A code to ensure backward compatibility
  • Assured of 1.5 dB increase in minimum C/A code power to mitigate any noise floor increase
  • Data-less signal component pilot carrier improves tracking
  • Enables greater civil interoperability with Galileo L1

Defined in IS-GPS-800

Source: Wikipedia.

More information here.